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Tensile deformation of nanocrystalline ZrO2 + 5 mol% Y2O3 at temperatures in the range of
1283–1403 K is described. It is demonstrated (a) that steady state flow is possible at
temperatures of the order of 0.42 Tm, where Tm is the absolute melting point, (b) that 70%
engineering strain could be obtained at 1403 K (0.46 Tm), and (c) that significant grain
boundary sliding was present during deformation. Static and dynamic grain growth as also
a decrease in the relative density of the specimen with deformation could be observed. The
present results as well as those of Owen and Chokshi concerning superplastic flow in
sub-microcrystalline materials taken from literature could be accounted for quantitatively
using the grain boundary sliding controlled flow model of Padmanabhan and Schlipf,
originally proposed for microcrystalline superplastic alloys. C© 2001 Kluwer Academic
Publishers

1. Introduction
Superplastic flow in metallic materials was established
in the early years of the twentieth century [1–3]. Start-
ing from 1985, this phenomenon has also been demon-
strated in ceramic materials, one of the most extensively
studied systems being yttria-doped partially stabilized
tetragonal zirconia [4–14]. Almost from the beginning,
it was realized that grain/interphase boundary sliding
is the dominant process in superplastic deformation. In
1971 this mode of deformation was identified for the
first time as the mechanism controlling the rate of op-
timal superplastic flow [15–17]. A divergent view has
also existed all along that boundary sliding is an inher-
ently fast process and that only diffusion or dislocation
slip can control the rate of flow [1–3, 18–21].

More recently, it has been realized that the net con-
tribution of dislocation slip to external superplastic
strain is zero [22]. This mechanism as a rate con-
trolling process becomes even less attractive for sub-
microcrystalline and nanocrystalline materials in which
also superplastic behavior is seen [23–25]. Nor is it of
much relevance in understanding superplastic flow in
ceramic materials.

∗Author to whom all correspondence should be addressed.

Diffusion and grain boundary sliding are interdepen-
dent processes and the slower of the two determines the
overall rate of deformation [26, 27]. Thus, even in dif-
fusion controlled flow grain boundary sliding is present.
But here the latter process is considered to be faster than
the former. There is clear evidence for the occurrence
of grain boundary sliding during superplastic deforma-
tion in both metallic and ceramic materials (see below
also). A fully consistent model can be constructed by
treating either diffusion or grain boundary sliding to be
rate controlling [28]. But, considering grain boundary
sliding to be rate controlling has the following advan-
tages: (a) The significant near-random grain rotations
present during superplastic flow can be quantitatively
accounted for [29, 30]. (b) Aided by boundary migra-
tion [31, 32], this process can easily explain why the
grain shape remains practically unchanged even after
extreme elongation. (c) The analysis applies equally to
metallic and ceramic superplastics. (d) Recently, the
analysis has been extended to explain the deformation
of nanostructured materials also [23, 24].

Using experimental data pertaining to a number
of systems, the model has been shown to describe
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accurately superplastic flow in microcrystalline- and
nanocrystalline- materials [23, 25, 33, 34]. In this pa-
per, the first set of detailed results pertaining to tensile
(superplastic) deformation behavior of nanocrystalline
yttria doped partially stabilized zirconia (n-Y-PSZ) is
reported at temperatures below 0.5 Tm. It is also shown
that these results as well as the earlier ones on sub-
microcrystalline yttria stabilized tetragonal zirconia
(Y-TZP) [13] are consistent with the model in which
grain/interphase boundary sliding is regarded as the rate
controlling process [23, 25, 28].

2. The model
A full description is available elsewhere [23–25, 28,
30–34]. Only those aspects of the model needed for
this paper are discussed here.

2.1. Theory
It is assumed that rate controlling flow is confined to a
network of deforming grain- and interphase-boundaries
that surround essentially non-deforming grains except
for what is required to achieve strain and geometric
compatibility [28]. Boundaries of high viscosity can be
bypassed by grain rotation [29, 30]. In the analysis, a
boundary is divided into a number of atomic scale en-
sembles (“basic units” of sliding) that contain free vol-
ume [35]. For calculations, the basic unit is assumed to
be an oblate spheroid of ground area πδ2 in the bound-
ary plane and radius on either side of the boundary of
(δ/2), where δ is the grain boundary width. At a high ho-
mologous temperature most of the energy of activation
is available from thermal energy. Then, the basic unit
can shear to a neighboring configuration if the shear
stress exceeds τi (= �Fi/γi V0), where �Fi is the free
energy of the shear transformation, γi the strain associ-
ated with the unit shear event and V0 = 2/3 πδ3 is the
volume of the basic unit.

According to Wolf [35] the excess free volume of
high angle grain boundaries varies only slightly with
misorientation. This has two consequences. First, for
stresses τ ≥ τi the configuration C′ is topologically
equivalent to Ceq (equilibrium configuration) and forms
the new equilibrium configuration C′

eq. Again there will
be metastable states C′′ nearby, which are transformed
by the action of τi to a lower energy state of C′′

eq equal
to Ceq so that grain boundary sliding can proceed by
a sequence of shear transformations. The equivalence
of Ceq and C′

eq constitutes isoconfigurational flow ki-
netics which can be described by transition state the-
ory [28]. Second, the individual shear transformations
γi and the accompanying transient volume expansions
εi as the basic unit shears in an embedded solid ma-
trix will not differ much for different basic units or
for the different metastable states within a basic unit.
Thus γi and εi can be replaced by their averages γ0
and ε0 respectively. The values of �Fi , however, will
vary because the shear distortions will partly remain,
depending on the state of deformation of the neighbor-
hood. This spectrum of activation energy values will be
centred around a mean value �F0, which corresponds
to a shear transformation of γ0 and a transient volume

expansion ε0. (In other words, the elastic energy of the
shear and transient volumetric distortions constitutes
the free energy of transformation, �F0, for the bound-
ary sliding process involving a basic unit.).

In high temperature creep, steric hindrance makes
this atomic scale sliding rather ineffective and causes
triple point cracking and premature failure. In order
to produce substantial sliding on a mesoscopic scale
(defined to be of the order of a grain diameter or
more), two or more grain boundaries must cooperate to
form a plane interface which by interconnection with
other similar plane interfaces enables long range slid-
ing until stopped by an insurmountable barrier, e.g.,
an extra large grain or a coarse precipitate. The driv-
ing force for plane interface formation is the reduc-
tion in the overall grain boundary energy through a
reduction in the grain boundary area in the direction
of sliding and this is achieved through local bound-
ary migration [28, 31]. (This is a much easier pro-
cess than that envisaged in diffusion models in which
diffusion distances of the order of the grain size are
involved.)

Thus, in this approach grain/interface boundary slid-
ing is visualized as a two scale phenomenon. On the
microscopic scale the obstacles to sliding are localized
and can be overcome by thermal activation. Short range
internal stresses develop at this level. On a mesoscopic
scale the obstacles to sliding are other grains or parti-
cles residing at grain/interphase boundaries. The inter-
nal stresses associated with sliding at this level have a
long range and manifest themselves as a threshold stress
(which should be substracted from the applied stress to
know the effective stress driving the microscopic scale
sliding process).

The threshold stress, σ0, needed to be overcome be-
fore a plane interface that allows mesoscopic sliding
can form is estimated as follows. At the mesoscopic
level, the polycrystalline structure is described as a cu-
bic dense packing of equisized spheres. The walls of
the Wigner-Seitz cell containing one sphere represent
the grain boundaries. This corresponds to a face cen-
tered cubic structure on a mesoscopic scale with glide
planes and glide directions. Since the roughness is the
lowest on the {111} planes, these are assumed to be the
glide planes for long range (mesoscopic) sliding. In or-
der to create a plane interface, the peaks and troughs
of the mesoscopic {111} plane must be removed by lo-
cal migration. For this to happen, the grain boundary
area perpendicular to the plane interface will have to in-
crease by an amount �A per grain. (However, in view
of the decrease in grain boundary area in the direction
of sliding the net change in grain boundary area is neg-
ative [28].) The number of grain boundaries, N , that
participate in such a mesoscopic sliding event can be
calculated theoretically by minimizing the energy ex-
penditure per grain as a function of N . This is yet to
be done. So, at present N is experimentally determined
using scanning/transmission electron microscopy (see,
Figs 4 and 6 of ref. [31]).

Mathematical development of the above ideas for a
grain of average size D, rhombic dodecahedral shape
and specific grain boundary energy γB in a material of
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shear modulus G, leads to an expression [28, 33]

σ0 = 30.5
(

2GγB

αf

)0.5[
�A/A

(NA)0.5

]a2

(1)

where αf is a form factor of the order of unity and A is
the grain boundary area per grain.

For a single phase material of uniform grain size,
a2 = 0.5. In real materials ‘a2’ will depend on the
grain size and shape distributions, as well as the ratio
of phases, subject to the constraint 0 < a2 ≤ 0.5. G, γB
and N are material properties known/determined from
experiments. From the geometry of rhombic dodeca-
hedron,

�A =
(

20.5

8
D2

)
and A =

[
30.5

4
D2

]
.

As stated above, an effective stress σeff = (σ − σ0) will
be available for the atomic scale (microscopic) sliding
process. The rate equation is obtained as [28, 33, 34]

ε̇ =
(

δ

30.5

γ 2
0 V0ω0

DkT σm

)[
(σ − σ0){σm

+ α(σ − σ0 − 2σm)} + σ 2
m α exp

(
− 1

α

)]
(2)

where ω0 = ν exp(−�F0/kT ), with ν the thermal
vibration frequency. k is the Boltzmann constant,
�F0(= Q − T �S) the free energy of the unit sliding
event, Q the activation energy for the rate controlling
process, T the absolute temperature of deformation and
�S is the entropy of activation. σm and λ(= 2/απ0.5)
are the mean and the standard deviation of the internal
stress distribution at a boundary arising from (atomic
scale) sliding.† From bubble raft experiments γ0

∼= 0.1
and field ion microscopy has revealed that in many
materials δ ∼= 2.5b, where b is the average interatomic
spacing in the boundary region. �F0 can be calculated
ab initio from the Eshelby relationship [28, 33]

�F0 = 1

2

(
β1γ

2
0 + β2ε

2
0

)
GV0 (3)

where β1 = 0.470(1.590 − p)/(1 − p), β2 = 4(1 + p)/
[9(1 − p)], with p the Poisson ratio and the tensile
strain resulting from unit shear ε0

∼= (γ0/2) = 0.05.

2.2. Numerical validation
Equation 2 can be rewritten as

ε̇ = aσ 2 + bσ + c (4)

†Equation 2 is obtained as a linear approximation (σ − σ0 = σ ′ ∼=
σm + u) of the rigorous equation [28]

ε̇ = δγ 2
0 V0ω0

30.5 DkT

{
σ ′

[
1 + α

(
ln

σ ′

σm
− 1

)]
+ σm α exp

(
− 1

α

)}
;

σ ′ = (σ − σ0)

The dimensional consistency of this equation is evident when it is
realized that (γ 2

0 V0) has the dimensions of (energy/G) (since strain =
(stress/G); stress × strain × volume = energy).

where

a =
(

αC1

σm

)
, with C1 =

(
1

30.5

δ

D

γ 2
0 V0ω0

kT

)
;

b =
(

C1

σm

)
[σm − 2ασ0 − 2ασm];

c =
(

C1

σm

)[
ασ 2

0 + 2ασ0σm − σ0σm

+ σ 2
m α exp

(
− 1

α

)]
(5)

The ‘best fit estimates’ of the constants a, b, c (a > 0,
b > 0, c < 0 [34]) in Equation 4 can be obtained unam-
biguously by a least squares analysis. From Equation 5

σ 2
m = 1

4a2

(b2 − 4ac)(
1

2α
− 1

)2

− exp

(
− 1

α

) (6)

σ0 = σm

(
1

2α
− 1

)
− b

2a
(7)

C1 = (aσm/α)
(8)

From Equation 6, 0 < α ≤ αc
∼= 0.390 [34]. In addition

to Equations 6–8, a fourth condition is introduced
through the statistical criterion of ‘minimum variance
unbiased estimate’, i.e., in the best solution the
standard deviation is a minimum (or α = 2/(λπ0.5) is
a maximum).

From the physical nature of the problem [33, 34]

σ0 < σmin = min
i=1,2,...,N

{σi };

σm < σmax = max
i=1,2,...,N

{σi }; (9)

where {σi } represents the set of experimental values
used to estimate a, b, c. Thus α is increased from 0
to its limiting value of 0.390 in steps of 0.001 (say)
and using this value of α, for each case σm, σ0, and C1
values are calculated from Equations 6–8. The highest
value of α for which the inequalities in Equation 9 are
satisfied is accepted as the final answer and the cor-
responding α, σm, σ0, C1 values are taken as the con-
stants of the physical model. Thus, in this analysis at
the macrolevel the stress-strain rate data can be ac-
counted for using three constants. If the material prop-
erties G, γB, p, δ, N and γ0 are known from literature
or separate experiments, these three constants of the
constitutive equation can be calculated ab initio.

2.3. Grain size dependence of strain rate
From Equation 1 and the expressions for �A and A
given below that equation, it follows that σ0 ∝ 1/Da2 .
‘a2’ is determined as follows: from Equations 4–9,
the ‘best estimate’ of σ0 is obtained (Equation 7) for
different grain sizes. From these results ‘a2’ is ob-
tained by a least squares analysis using the rela-
tionship σ0 = K ′

1

Da2
, where K ′

1 is a constant (equal
to [60.5 · ( 2

3 )0.5a2 (GγB)0.5( 1
αf N 0.530.25 )a2 ]. Substituting this

grain size dependence in Equation 2, the grain size de-
pendence of strain rate for the model is obtained as
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ln ε̇σ
∼= A1 − ln D − A2

Da2
+ A3

D2a2
(10)

where A1, A2, A3 are constants that have absorbed all
other constants. (Equation 10 has been derived here for
the first time by truncating an infinite series expansion
for the logarithmic function on the right hand side at
the second degree.) The suffix (σ ) denotes the variable
that is kept constant.

2.4. Activation energy for the rate
controlling process

From Equation 5

C1 = B0

(
ν

kT

)
exp

(
− Q

RT

)
(11)

where B0 has absorbed the other constants [34]. The
thermal vibration frequency, ν, is taken either as equal
to (kT/h) or as 1013 s−1 (h is Planck’s constant). It has
already been shown that the difference in the activation
energy for the rate controlling process, Q, obtained by
using either of these two values is rather small [33, 34].
Therefore, in the present calculations ν is taken as equal
to (kT/h). Then,

C1 = B1 exp

(
− Q

RT

)
(12)

with B1 = (B0/h). Thus, Q can be evaluated from
Equation 12 by plotting lnC1 values corresponding to
different temperatures against 1/T .

3. Experimental
Nanocrystalline oxide powders of ZrO2 and Y2O3 were
synthesized using the inert gas condensation (IGC)
technique [36]. Zirconium monoxide and yttrium metal
were evaporated separately in a helium atmosphere at
an initial pressure of 2 mbar. The small particles formed
above the tungsten crucible due to the condensation of
the vapor phase in the helium atmosphere were quickly
transported through the growth zone by gas convec-
tion and deposited as loose powder by thermophoretic
forces on a stainless steel plate kept at liquid nitrogen
temperature. To obtain stoichiometric ZrO2 and Y2O3,
an oxygen atmosphere was introduced in the IGC cham-
ber once the evaporation process was complete. After
collection of the powder particles from the cold plate a
further oxidation step of annealing in a flowing oxygen
atmosphere at 573 K for 2 hours was resorted to. By
pre-mixing the dry powders and suspending them in al-
cohol, a composition of ZrO2 + 5 mol% Y2O3 was ob-
tained. The suspension was ultrasonically vibrated and
simultaneously stirred. Following drying and crushing,
the powders were compacted at room temperature by
applying a uniaxial pressure of 80 MPa. Then, cold
isostatic pressing at a maximum pressure of 460 MPa
was employed. Ceramic discs of about 28 mm diameter
and 2 mm thickness were obtained using pressureless
sintering at 1423 K for 2 hours in vacuum. To ensure/re-
establish stoichiometric composition, cooling to room

temperature was done in flowing oxygen. The heating as
well as the cooling rate was maintained at 200 Kh−1. (It
is evident that the method of preparation of dense, truly
nanocrystalline ceramic samples is rather time con-
suming. This explains the near-total absence of tensile
deformation data for this class of materials.)

The ceramic discs were machined using diamond
coated tools to obtain dog-bone shaped tensile spec-
imens of gauge length 10.0 mm, thickness of about
1.5 mm and width 2.5 mm. The pieces left from cutting
were used as reference samples. Properly located holes
were placed in the grip region for mounting the speci-
mens on to the testing machine. Al2O3 pins and Al2O3
pull rods were used for this purpose. The test assembly
was surrounded by a furnace of dimensions 100 mm
diameter and 250 mm height. It was fitted with 6 sili-
con carbide heating elements. The maximum attainable
temperature was 1773 K. Using a microprocessor based
program controller and a Pt/Pt-Rh 13% R-type thermo-
couple, an accuracy of ±1 K could be ensured in the
tensile tests. Exact temperature determination on the
tensile specimen (between the alumina pull-rods) was
made using Philips temperature control rings. The spec-
imen/test assembly was heated from room temperature
to the test temperature. Apart from the tensile speci-
men a reference piece from the same ceramic disc (of
identical initial microstructure) was placed at the top of
the lower pull-rod and it experienced the same thermal
treatment as the test specimen.

A closed loop servohydraulic MTS machine (model
810.12) of 10 ton capacity was used for the tensile tests.
The full capacity of the load cell was 100 kg, but the
present experiments were done in the 10% range of
that load cell. All tests were in air in the stroke control
mode, i.e., the rate of cross-head displacement was kept
constant.

Specific surface areas of the nanocrystalline pow-
ders and powder compacts were calculated from
N2-adsorption measurements applying multipoint BET
(Brunauer, Emmett, Teller) analysis. Pore size distri-
butions of the channel-like-open porosity of nanocrys-
talline green bodies were evaluated from the desorption
branch of the N2-adsorption isotherm using the BJH
(Barrett, Joyner, Hallenda) theory.

Grain sizes of powders, compacts and ceramic discs
were calculated from the broadening of the XRD
peaks using the Scherrer formula. These values were
then cross-checked by high resolution scanning elec-
tron microscopy (HRSEM). Tensile tested specimens
were also subjected to standard scanning electron
microscopy. Relative densities of specimens were de-
termined by the Archimedes principle (immersion in
water). After each step, including sintering and defor-
mation, crystal structure was identified by comparing
the peak positions in the XRD patterns of the present
samples with those published in literature.

In addition to the present results, data presented by
Owen and Chokshi [13] were also analyzed in terms of
the grain/interphase boundary sliding controlled flow
model presented in Section 2 to establish that the model,
earlier shown to be valid for microcrystalline materials,
is also useful for understanding tensile flow in sub-
microcrystalline and nanocrystalline materials.
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4. New results
The starting nanocrystalline (n-) zirconia powders had
monoclinic and tetragonal phases of average grain
size 8 nm. The specific surface area was 120 m2 g−1.
The yttria powders had a monoclinic structure, an
average grain size of 14 nm and a specific surface
area of 60 m2 g−1. Absence of hysteresis between the
adsorption and desorption branches of the isotherms
of nitrogen adsorption measurements in both the
powders revealed that the powders were rather loosely
agglomerated.

Room temperature (green) compacts of ZrO2 +
5 mol% Y2O3 had a relative density of 40%. After com-
paction, the tetragonal phase was absent and only the
monoclinic phase was observed in zirconia. The crystal-
lographic structure of yttria was retained. The specific
surface area of the green compact was 99.8 m2 g−1.
The pore size distribution was lognormal and the aver-
age pore diameter 8 nm. After sintering, the tetragonal
and the cubic phases were stabilized with a tetragonal
phase content X tet ≈ 70%. The relative density of the
sintered discs ranged between 84 and 94%. The average
grain size varied between 45 and 75 nm.

At 1283 K (0.42Tm, where Tm is the absolute melting
temperature of zirconia), a specimen of average grain
size of 54 nm was subjected to an engineering strain of
0.08 at an initial strain rate of 5.7 × 10−6 s−1. To the
best of our knowledge, this is the lowest temperature
to date at which yttria partially stabilized zirconia has
been deformed into the steady state. The largest elonga-
tion in the present experiments, which was about 70%
engineering strain, was obtained at 1403 K (0.46Tm)
in a specimen of initial grain size 75 nm and density
94% of theoretical value deformed at an initial strain
rate of 3.1 × 10−5 s−1. The true (flow) stress - true strain
curves of both the samples are presented in Fig. 1.
(Evidently, in both cases steady state flow got estab-
lished.) Fig. 2 displays an untested sample, along with
the specimen that experienced the maximum elonga-
tion at 1403K—a temperature normally considered to
be low for the deformation of ZrO2 + 5 mol%Y2O3.
The deformation in the gauge portion of the specimen

Figure 1 True flow stress as a function of true strain for two nanocrys-
talline 5Y-PSZ samples tested at 1283 K and at 1403 K at initial strain
rates of 3.1 × 10−5 s−1 and 5.7 × 10−6 s−1, respectively.

Figure 2 Photograph of dog-bone shaped tensile samples with a sample
showing the original dimensions (above) and another homogeneously
elongated specimen (below). An engineering strain of more than 70%
could be obtained in this nanocrystalline material at 1403 K.

was homogeneous; the cracks at the holes developed
when the specimen was being removed from the test
assembly (very tight gripping by the assembly pins fol-
lowing heating). Fracture started at machining marks
left on the specimen surface due to inadequate polish-
ing. Thus the 70% elongation obtained may be regarded
as a conservative value.

Using sub-microcrystalline (grain size ≈ 300 nm)
zirconia powder, elongations of several hundred
percent have been obtained at 1823K [3]. But this
is the first report of substantial elongation (70%) in
a truly nanocrystalline material (grain size less than
100 nm) prepared by the powder metallurgy route
and tested at a homologous temperature of 0.46Tm.
In the sub-microcrystalline material an elongation
of 60% could be obtained at 1473 K (0.49Tm). Flow
behavior was investigated in detail at a temperature of
1333 K (0.44Tm). In Fig. 3 the flow stress is plotted as
a function of true strain corresponding to five different
cross-head speeds (the initial strain rates are indicated

Figure 3 True flow stress as a function of true strain for different
nanocrystalline 5Y-PSZ samples tested under constant cross-head speed
conditions in the range of 3 × 10−6 s−1 to 3.9 × 10−5 s−1 at a tempera-
ture of 1333 K.
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in the figure). In all cases steady state flow was present
and flow stress increased with strain rate. Initial values
of the relative density, ρrel, and the average grain size,
D0, of the samples were 85 ± 1% and 50 ± 5 nm,
respectively.

No (or negligible) change in the contents of the
phases present (tetragonal and cubic) was noticed after
the deformation. In all cases the grain size of the ref-
erence sample that was exposed to temperature for the
duration of the test was greater than the starting grain
size. The grain size in the gauge portion of the specimen
that was exposed to both temperature and strain was
greater than that in the reference sample. Thus, static
grain growth could be separated from dynamic grain
growth. It was also seen that exposure to temperature
had increased the relative density of the reference sam-
ple but deformation had caused a decrease in the rela-
tive density in the gauge portion. (Therefore, plots like
Figs 1 and 3, which assume constant volume, are ap-
proximate.) For example, in a specimen of initial grain
size of 75 nm tested at 1403 K for 7 hours, an engi-
neering strain of 70% was obtained. During this pe-
riod, the average grain size in the reference sample had
increased to 95 nm but that in the gauge portion was
128 nm. The relative density of the starting specimen
was 94%, which had increased to 96% in the reference
sample but had fallen to 92% in the gauge portion.

In tested specimens, regions away from the fracture
zone were dense and contained equiaxed grains. (A high
resolution SEM picture is presented and discussed in
the next section.) Similar to what was seen in metallic
specimens undergoing high temperature (superplastic)
deformation, grain boundary sliding started at bound-
aries that were inclined favourably to the stress axis.
In view of the limited ductility of the present ceramic
material compared with metallic alloys, cavitation and
cracking developed throughout the specimen rather
early (Fig. 4a) Loss of density mainly arose due to
cracks that developed perpendicular to the tensile axis.
These cracks originated at surface flaws left after pol-
ishing, e.g., grinding lines perpendicular to the tensile
axis. Void nucleation was preferentially present at triple
junctions of grains. Cracks several hundred microme-
ters long were observed on the surface of deformed
samples. A careful examination further revealed that
the onset of cracking depended critically on the ef-
ficiency of compacting and sintering as well as the
degree of polishing of the specimen prior to testing
(Fig. 4b). It is well known that the distribution and
morphology of the voids and cracks have a strong
bearing on the magnitude of the strain to fracture.
A quantitative investigation has been planned for the
future.

5. Discussion
5.1. New results
In all samples tested at 1333 K (ρrel = 85 ± 1%;
D0 = 50 ± 5 nm) steady state had set in at a true strain
of 0.15. The stress-strain rate data at this strain are pre-
sented in Fig. 5 and analyzed in terms of the simple two
parameter power law ε̇ = K1σ

n , with K1 and n (stress
exponent) empirical constants (n = 1/m, with m the

strain rate sensitivity index), and the atomistic model
for grain boundary sliding controlled flow (Equation 4).
For the two parameter power law a constant strain rate
sensitivity index of 0.41 was determined, whereas in
case of the atomistic model m increased from 0.27 at the
lowest instantaneous strain rate value of 2.6 × 10−6 s−1

to 0.48 at the highest value of 3.3 × 10−5 s−1 (calcu-
lated from the slope of the theoretical curve). On the
basis of a χ2-minimization fit, the boundary sliding
controlled flow model resulted in a slightly lower value
of χ2. Since the power law model does not provide for
a change in the m-value, it is anticipated that the differ-
ence between the two models will become more pro-
nounced over a larger range of strain rates. In the present
experiments, due to difficulties in sample preparation
in large quantities, the strain rate could only be varied
over one order of magnitude. This strain rate range has
to be extended to clearly establish the superiority of
Equation 4 over the two parameter power law. For the
present results both the equations predict acceptable
levels of accuracy; but the model for grain boundary
sliding controlled flow results in a somewhat better fit
with the experimental data.

Taking the experimental strain rate (ε̇)- stress (σ )
values presented in Fig. 5, Equations 4–8 and the
minimum variance unbiased estimate criterion, the
α, C1, σ0, σm values were evaluated for the present
results as 0.308, 1.81 × 10−6MPa−1 s−1, 12 MPa and
56 MPa respectively. Using these values, it could be
ensured that the observed strain rates of deformation
could be predicted at different stress levels very accu-
rately. (In microcrystalline materials tested over a wide
range of strain rates, it has already been shown that
Equation (4) is preferable to the two parameter power
law [34].)

For the experimental points at 1333 K, the follow-
ing phenomenological expression for dynamic grain
growth was obtained by a least squares analysis
(Fig. 6a):

dDdyn

dt
= γ · Ddyn ·

(
dε

dt

) f

(13)

with γ = 1.01 and f = 1.03. A relationship of this kind
has also been reported for microcrystalline 3Y-TZP
[37], where γ = 0.13 and f = 0.97. Theoretical ap-
proaches to dynamic grain growth [38–41] differ in
physical details (diffusion or dislocation motion) but the
mathematical formulations are similar to Equation 13.
In these models a linear dependence between dynamic
grain growth rate and strain rate is predicted ( f = 1). γ
is a constant that depends on both the mechanism and
the material. Therefore, based on the phenomenologi-
cal Equation 13 no further discussion is possible on the
physical mechanism controlling dynamic grain growth.

In Fig. 6b a linear increase in the normalized density
loss rate versus strain rate divided by time is obtained in
a double logarithmic plot (T = 1333 K). The following
least squares relation was valid:

dρdyn

dt
= κ · ρ ·

(
1

t
· dε

dt

)ϕ

(14)
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(a)

(b)

Figure 4 (a) Cracking along boundaries that experienced maximum deformation; (b) evidence for cracking all over the specimen which could be
traced to problems associated with compacting, sintering and polishing of specimen prior to testing (test temperature 1333 K; elongation 16%).
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Figure 5 Double logarithmic plot of the flow stress-strain rate data at
a constant true strain value of 0.15 for the n-5Y-PSZ samples tested at
1333 K. Analysis of the data was done using the two parameter power
law and Equation 4.

Figure 6 Phenomenological relationship between microstructural evo-
lution and test conditions: normalized dynamic grain growth rate versus
strain rate (a) and the normalized density loss rate versus strain rate
divided by time (b).

with κ = 0.12 and ϕ = 0.51. While the division of the
strain rate by time (for normalization) may be justified
on the grounds that at a slower strain rate accumulation
of strain in a given time and hence the effect on the
density loss rate is less, it is also safe to state that other
combinations of the experimental variables too may
be equally successful. Further work is needed before

Equation 14 can be regarded as a physically meaningful
description. The high resolution SEM micrograph pre-
sented as Fig. 7 corresponds to a specimen elongated by
36% at 1333 K. The average size of the equiaxed grains
after deformation was 113 nm. The dominance of grain
boundary sliding, as revealed by the clear delineation of
grain boundaries by deformation, is evident. Also, the
surface delamination seen in the deformed specimen is
very similar to what was reported by Hazzledine and
Newbury [42] in a metallic superplastic alloy. Based on
the present analysis of superplastic flow in a ceramic
and the earlier results pertaining to metallic systems
[33, 34], it is clear that a model based on grain bound-
ary sliding controlled flow can apply equally to metallic
and ceramic materials.

5.2. The results of Owen and Chokshi [13]
The experimental results of Owen and Chokshi [13]
also can be understood in terms of the grain bound-
ary sliding controlled flow model outlined in Section 2.
As before, the data presented in Figs 4 and 7 of [13]
(and reproduced as Fig. 1 in [14]) were analyzed using
Equations 4–9 and the minimum variance unbiased es-
timate criterion. The findings are presented in Table I.
The predicted strain rates are close to the experimen-
tally observed values and always the accuracy is within
an order of magnitude.

A prediction of the model (Equation 1) is that the
threshold stress, σ0, varies according to the relation,
σ0 ∝ 1

Da2
, i.e., σ0 decreases with increasing grain size.

It was also stated in Section 2 that in a real material
in which grain size and shape distributions are present,
a2 has to be found experimentally. Using the σ0 val-
ues reported in Table I for the three grain sizes tested
by Owen and Chokshi [13] a2 was evaluated as 0.028.
As required by the model, σ0 decreased with increasing
grain size. From Section 2c, it follows that the grain size
dependence of strain rate at a given temperature should
obey Equation 10. This relationship is plotted in Fig. 8.
Evidently the fit is excellent. This result emphasizes the
need to base arguments about atomistic mechanisms
on microstructural and topological considerations, in
addition to those based on simple macrolevel measure-
ments. Here, it has been demonstrated that the grain
size dependence of the strain rate in the entire exper-
imental range employed by Owen and Chokshi [13]
obeys Equation 10. Therefore, the argument [14] that
the rate controlling process is Coble creep because over
a limited range the grain size dependence of strain rate
is inverse cubic is to be viewed with caution.

From the values of C1 presented in Table I cor-
responding to a grain size of 0.41 µm and different
temperatures, the activation energy for the rate control-
ling process was calculated using Equation 12 (Fig. 9).
An activation energy value of 457 ± 135 kJ mol−1 was
obtained. This value is close to those reported earlier
by Owen and Chokshi [13] and Berbon and Langdon
[14]. But their arguments are based on diffusion con-
trolled flow models. This again highlights the danger
in basing arguments about atomistic models only on
macroscopic measurements like the activation energy,
stress exponent and grain size dependence of flow rate.
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Figure 7 High resolution SEM surface image of a n-5Y-PSZ ceramic after deformation.

Figure 8 Logarithmic strain rate versus grain size data from [13] for
3Y-TZP at 1723 K and different stress levels. The data were fitted to
Equation 10 (solid lines).

5.3. Ab initio calculations
Based on the foregoing, it can be unequivocally stated
that both the experimental results of the present authors
as well as those of Owen and Chokshi [13] can be under-
stood in terms of the grain/interphase boundary sliding
controlled flow model described in Section 2.2 with the
aid of three constants. However, for making a connec-
tion with the physical model, the constants σ0, Q (the-
oretically connected to �F0) and C1 values reported in
Table I and Section 5(b) should be shown to be of the
right order of magnitude by ab initio calculations.

With a2 in Equation 1 equal to 0.028, G = 95 ×
103 MPa [14], γB = 0.62–0.82 Jm−2 [43, 44], N = 4
(value assumed based on experiments on Al-based
superplastics [33]), grain size D = 0.41–1.20 µm or

50–100 nm (as the case may be), from Equation 1 a σ0
value in the range of 0.86–1.05 MPa is predicted. This
is of the right order of magnitude (see Table I) for the
results of Owen and Chokshi [13], particularly because
the γB value assumed corresponds to ZrO2 + 8 mol%
Y2O3 [43, 44] while Owen and Chokshi [13] did their
experiments on ZrO2 + 3 mol% Y2O3. Also the value
of N has been assumed and not directly measured. As
for the present results, the predicted value of σ0 is less
than the value determined from the experiments (Sec-
tion 5a) by a factor of 10. This is attributed to the signif-
icantly lower temperatures employed here (1333 K vs.
1623–1723 K in the experiments of Owen and Chokshi
[13] and the temperature range in which γB was mea-
sured). It is well known that G increases (approximately
linearly) with decreasing temperature in the tempera-
ture range of interest and according to the grain bound-
ary sliding controlled flow model σ0 ∝ G0.5. Moreover,
N , the number of contiguous grain boundaries that form
the plane interface, will change with temperature. Thus,
it is reasonable to state that the σ0 values determined
from the experiments are physically realistic. Further,
the prediction of the model that σ0 increases with
decreasing grain size or temperature (Equation 1; see
also [28, 33]) is verified (Table I). However, it is safe
to note that at the present stage of development of the
model, if grain size and shape distributions are present
in a material, a2 in Equation 1 can only be obtained
from experiments. Also, a method of theoretically de-
termining the value of N is yet to be suggested.

The model also enables the prediction (a) of the free
energy of shear transformation resulting from the rate
controlling step (Equation 3) and (b) through the re-
lation �F0 = Q − T �S the activation energy for the
rate controlling process. For the present calculations,
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T ABL E I Physical parameters and the experimental and the predicted
strain rates dεexp/dt and dεpred/dt , for the data of Owen and Chokshi
[13]

3Y-TZP (D = 1.2 µm, T = 1723 K)

Physical α C1 [MPa−1 s−1] σ0 [MPa] σm [MPa]
parameters 0.3068 1.61 × 10−6 2.94 61

σtrue [MPa] dεexp/dt[s−1] dεpred/dt[s−1]
Experimental 3 1.4 × 10−7 1.2 × 10−8

and predicted 6 5.7 × 10−7 1.8 × 10−6

strain rates 16 4.1 × 10−6 9 × 10−6

at different 59 5 × 10−5 6 × 10−5

stress levels 96 1.6 × 10−4 1.3 × 10−4

215 4.9 × 10−4 5 × 10−4

3Y-TZP (D = 0.66 µm, T = 1723 K)

Physical α C1 [MPa−1 s−1] σ0 [MPa] σm [MPa]
parameters 0.2577 1.04 × 10−5 2.96 140

σtrue [MPa] dεexp/dt[s−1] dεpred/dt[s−1]
Experimental 3 2.2 × 10−7 8.6 × 10−7

and predicted 6 1.65 × 10−6 1.4 × 10−5

strain rates 20 2.1 × 10−5 9 × 10−5

at different 58 3 × 10−4 3.3 × 10−4

stress levels 98 7.2 × 10−4 6.5 × 10−4

235 2.2 × 10−3 2.2 × 10−3

3Y-TZP (D = 0.41 µm, T = 1723 K)

Physical α C1 [MPa−1 s−1] σ0 [MPa] σm [MPa]
parameters 0.3359 4.61 × 10−5 2.97 48

σtrue [MPa] dεexp/dt [s−1] dεpred/dt [s−1]
Experimental 3 4 × 10−7 8.8 × 10−7

and predicted 6 2 × 10−6 3.2 × 10−5

strain rates 10 9.8 × 10−6 8.4 × 10−5

at different 16 4 × 10−5 1.7 × 10−4

stress levels 30 3.1 × 10−4 4.4 × 10−4

39 7.9 × 10−4 6.6 × 10−4

58 1.2 × 10−3 1.2 × 10−3

100 3.2 × 10−3 3 × 10−3

230 1.3 × 10−2 1.3 × 10−2

3Y-TZP (D = 0.41 µm, T = 1673 K)

Physical α C1 [MPa−1 s−1] σ0 [MPa] σm [MPa]
parameters 0.3168 2.95 × 10−5 5.92 135

σtrue [MPa] dεexp/dt [s−1] dεpred/dt [s−1]
Experimental 6 4.6 × 10−7 8.9 × 10−7

and predicted 16 1.4 × 10−5 1.2 × 10−4

strain rates 42 2.9 × 10−4 4.8 × 10−4

at different 100 2 × 10−3 1.6 × 10−3

stress levels 227 6 × 10−3 5.8 × 10−3

3Y-TZP (D = 0.41 µm, T = 1623 K)

Physical α C1 [MPa−1 s−1] σ0 [MPa] σm [MPa]
parameters 0.3048 6.50 × 10−6 5.99 69

σtrue [MPa] dεexp/dt [s−1] dεpred/dt[s−1]
Experimental 6 2 × 10−7 5.5 × 10−7

and predicted 20 3.9 × 10−6 4.1 × 10−5

strain rates 42 8.5 × 10−5 1.3 × 10−4

at different 100 5.4 × 10−4 4.9 × 10−4

stress levels 230 2 × 10−3 2 × 10−3

Poisson’s ratio ρ is taken as (1/3), G = 95 × 103 MPa
[14], V0 = 2

3πδ3 with the grain boundary width δ = 2.5b
(b = 0.36 nm [14]), γ0 = 0.1 (bubble raft experi-
ments [45]) and ε0 = (γ0/2). Then, a �F0 value of
486.5 kJ mol−1 is predicted. For high temperature phe-
nomena, e.g., diffusion, exp(�S/R) ∼= 12 [46]. Assum-

Figure 9 Arrhenius plot of the physical parameter C1 against the in-
verse temperature for 3Y-TZP with an initial grain size of 0.41 µm (data
from [13]).

ing that the entropy of activation for the grain bound-
ary sliding process is of the same order as that for
diffusion, an activation energy, Q, for the rate con-
trolling grain/interphase boundary sliding process of
521 kJ mol−1 is predicted (T �S = 34.5 kJ/mol.). This
compares favorably with an activation energy value of
457 ± 135 kJ mol−1 determined experimentally for the
data for Owen and Chokshi [13] - Fig. 9. Recently,
the activation energy for the rate controlling process in
the compressive deformation of n-5Y-PSZ in the tem-
perature range of 1363 K–1503 K has been reported to
be Q = 507 ± 14 kJ mol−1 [47]. Evidently, that value is
very close to the theoretical and the experimental values
reported here.

Finally, it is also possible to predict the value of C1
(Equation 6) ab initio. Taking δ = 2.5 b(b = 0.36 nm),
D = 0.055–1.2 µm, γ0 = 0.1, V0 = (2/3)πδ3, ω0 =
(kT/h) exp(−�F0/kT ) with �F0 = 486.5 kJ mol−1

and h = 6.625 × 10−36 J.s, a C1 value in the range of
6.7 × 10−7–7 × 10−8 s−1 MPa−1 is predicted. Here, the
values of δ, γ0 and �F0 are assumed. Less than 10%
variation in these values, will easily allow even an exact
matching with the C1 values obtained experimentally.

6. Conclusions
Based on the present investigation, the following con-
clusions are drawn:

1. Partially stabilized ZrO2 + 5 mol% Y2O3 ceramic
of average grain size 54 nm could be subjected to steady
state deformation and a true strain of 0.08 at as low a
temperature as 1283 K (0.42Tm).

2. At a relatively low temperature of 1403 K
(0.46Tm) a specimen of average grain size 75 nm could
be elongated by 70% in uniaxial tension.

3. Equiaxed grains and clearly delineated grain
boundaries in deformed nanocrystalline samples, as re-
vealed by scanning electron microscopy, provided clear
evidence for the occurrence of significant grain bound-
ary sliding.

4. Both static and dynamic grain growth were present
in the nanocrystalline specimens. Exposure to test tem-
perature without deformation for the duration of a
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tensile test led to densification of the sample. In con-
trast, the relative density of a specimen decreased with
increasing deformation.

5. The present results as well as those of Owen
and Chokshi [13] could be explained using the
grain boundary sliding controlled flow model due to
Padmanabhan and Schlipf [28] originally proposed for
microcrystalline materials. At the level of phenomenol-
ogy, a quantitative explanation for optimal structural
superplasticity could be presented with the aid of 3
material-dependent constants. If the grain size is uni-
form and the grain shape is of simple geometry, e.g., a
rhombic dodecahedron, the only input required through
a superplasticity experiment is the number, N , of grain
boundaries that join to form a plane interface during the
occurrence of mesoscopic (cooperative) boundary slid-
ing. (All other material properties like shear modulus,
Poisson’s ratio, grain boundary energy, grain boundary
width and the mean strain associated with a unit shear
event are to be taken from literature or obtained in gen-
eral experiments not necessarily related to superplastic
flow.) If grain size and shape distributions are present
in a material, the grain size exponent in the relation-
ship σ0 ∝ 1

La2
also has to be obtained experimentally.

Thus, in real materials at the level of atomistics, two
superplasticity experiments are necessary to determine
N and a2. Then, the stress-strain rate behavior can be
predicted for the entire optimal range.

6. The approach adopted in this paper has the advan-
tage that structural superplasticity in both metallic and
ceramic superplastics having micro-, sub-micro- and
nano-crystalline grains can be understood on a com-
mon basis.
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